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Abstract. TheXYZ spin chain is considered within the framework of the generalized algebraic
Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of the Bethe vectors is
computed and expressed in the form of a Jacobian. This result corresponds to the Gaudin hypothesis
for theXYZ spin chain.

1. Introduction

In this paper we consider theXYZ spin chain with the periodic boundary condition. The
Hamiltonian is defined by

HXYZ = − 1
2

L∑
n=1

(Jxσ
x
n σ

x
n+1 + Jyσ

y
n σ

y

n+1 + Jzσ
z
nσ

z
n+1). (1.1)

Hereσxn , σyn andσ zn are the Pauli matrices acting on a Hilbert state spaceHn = C2. The
Hamiltonian thus acts on⊗Ln=1Hn. The coupling constantsJx , Jy andJz are parametrized by

Jx = 1 + k sn2 2η Jy = 1− k sn2 2η Jz = cn 2η dn 2η (1.2)

wherek is the modulus of the Jacobi elliptic functions. In the limitk→ 0Jx , Jy andJz satisfy
Jx = Jy = 1 andJz = cos 2η, and theXYZ spin chain is reduced to theXXZ spin chain.

TheXYZ spin chain was first solved by Baxter in a series of remarkable papers [1, 2].
He discovered a link between theXYZ spin chain and a two-dimensional classical model,
the so-called eight-vertex model, and obtained a system of transcendental equations. With the
help of these equations the energy of the ground state of theXYZ spin chain was calculated.
Furthermore, he found the eigenvectors and eigenvalues of theXYZ spin chain by means of a
generalization of the Bethe ansatz method [3]. Referring to the algebraic Bethe ansatz, which
is more intelligible than the Bethe ansatz, Takhtajan and Faddeev succeeded in simplifying
Baxter’s method [4]. Their method is called thegeneralized algebraic Bethe ansatzand enables
us to deal with theXYZ spin chain more systematically.

For theXXZ spin chain, by means of the usual algebraic Bethe ansatz, various correlation
functions have been calculated. Gaudin forecasted that norms of the eigenvectors are expressed
by Jacobians, and Korepin proved his hypothesis [5]. Based on this fact scalar products of
arbitrary vectors were shown to be represented by determinants of matrices that contain bosonic
quantum fields called the dual fields [6]. Using them one can evaluate any correlation function
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of theXXZ spin chain. Recently, these results have been extended to the asymmetricXXZ

chain that is a non-Hermitian generalization of theXXZ spin chain [7].
The aim of the paper is to prove the Gaudin hypothesis for theXYZ spin chain by using

the generalized algebraic Bethe ansatz. We show that the sum of norms of the Bethe vectors
is expressed by a Jacobian. However, norms of the eigenvectors cannot be computed within
the framework of the generalized algebraic Bethe ansatz, because the Bethe vectors are not
equivalent to the eigenvectors (see (2.42), (2.43) and (2.55), (2.56)). We interpret the Gaudin
hypothesis as a theorem that holds for the Bethe vectors. This interpretation is supported by the
fact that the Bethe vectors correspond to the eigenvectors in the usual algebraic Bethe ansatz
for theXXZ spin chain.

Our result lays the foundation for the calculation of correlation functions of theXYZ spin
chain. In section 2 we review the generalized algebraic Bethe ansatz. In section 3 the sum
of norms of the Bethe vectors is shown to be given by a Jacobian. Section 4 is devoted to
concluding remarks.

2. Generalized algebraic Bethe ansatz

In this section we review the generalized algebraic Bethe ansatz for theXYZ spin chain. In
the original paper [4] the dual eigenvectors were not investigated. We include them for the
first time.

2.1. Description of the model

Central objects of the generalized algebraic Bethe ansatz are theR-matrix and theL-operator.
TheR-matrix is of the form

R(λ,µ) =


a(λ, µ) 0 0 d(λ, µ)

0 b(λ, µ) c(λ, µ) 0

0 c(λ, µ) b(λ, µ) 0

d(λ, µ) 0 0 a(λ, µ)

 (2.1)

where

a(λ, µ) = 2(2η)2(λ− µ)H(λ− µ + 2η)

b(λ, µ) = H(2η)2(λ− µ)2(λ− µ + 2η)

c(λ, µ) = 2(2η)H(λ− µ)2(λ− µ + 2η)

d(λ, µ) = H(2η)H(λ− µ)H(λ− µ + 2η).

(2.2)

We call λ,µ ∈ C the spectral parameters.H(µ) and2(µ) are the Jacobi theta functions
with quasi-periods 2K, 2iK ′ ∈ C (Im iK ′/K > 0). In this paper we assume that there exist
Q ∈ Z>0 such that

Qη = 2K. (2.3)

ThenH(µ) and2(µ) have a period 2Qη:

H(µ + 2Qη) = H(µ) 2(µ + 2Qη) = 2(µ). (2.4)

TheL-operator is expressed by a 2× 2 matrix whose elements contain the Pauli matrices:

Ln(µ) =
(

w4 +w3σ
z
n w1σ

x
n − iw2σ

y
n

w1σ
x
n + iw2σ

y
n w4 − w3σ

z
n

)
(2.5)
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where

w4 +w3 = 2(2η)2(µ− η)H(µ + η)

w4 − w3 = 2(2η)H(µ− η)2(µ + η)

w1 +w2 = H(2η)2(µ− η)2(µ + η)

w1− w2 = H(2η)H(µ− η)H(µ + η).

(2.6)

TheL-operatorLn(µ)acts on a Hilbert state spaceHn. This satisfies theYang–Baxter equation:

R(λ,µ)(Ln(λ)⊗ Ln(µ)) = (Ln(µ)⊗ Ln(λ))R(λ, µ). (2.7)

The Hamiltonian is derived from theL-operator as follows. The product of theL-operators
is called the monodromy matrix and is expressed in a 2× 2 matrix form:

T (µ) =
←−
L∏
n=1

Ln(µ) =
(
A(µ) B(µ)

C(µ) D(µ)

)
. (2.8)

The trace of the monodromy matrix over matrix space

t (µ) = tr T (µ) = A(µ) +D(µ) (2.9)

is called the transfer matrix and gives the Hamiltonian (1.1) via

HXYZ = − sn 2η
d

dµ
log t (µ)

∣∣∣∣
µ=η

+ constant. (2.10)

The Hamiltonian is thus diagonalized by the eigenvectors of the transfer matrix.

2.2. Gauge transformations

We introduce a family of gauge transformations with free parameterss, t ∈ C and integer
l = 0, . . . ,Q− 1. TheL-operator is replaced by

Lln(µ) = M−1
n+l(µ)Ln(µ)Mn+l−1(µ) =

(
αln(µ) βln(µ)

γ ln(µ) δln(µ)

)
(2.11)

with matricesMk(µ) (k = 0, . . . ,Q− 1) defined by

Mk(µ) =
(
H(s + 2kη − µ) (g(τk))

−1H(t + 2kη +µ)

2(s + 2kη − µ) (g(τk))
−12(t + 2kη +µ)

)
(2.12)

where

τk = 1
2(s + t) + 2kη −K g(µ) = H(µ)2(µ). (2.13)

In the generalized algebraic Bethe ansatz the following vectors are important:

|ωln〉 = H(s + (2(n + l)− 1)η) |↑〉n +2(s + (2(n + l)− 1)η) |↓〉n (2.14)

〈ωln| = n〈↑|2(t + (2(n + l)− 1)η)− n〈↑|H(t + (2(n + l)− 1)η). (2.15)



8392 Y Fujii and M Wadati

Here|↑〉n and|↓〉n are the orthonormal basis of a Hilbert state spaceHn, andn〈↑| andn〈↓| are
those dual basis. The actions of elements of the transformedL-operator on|ωln〉 and〈ωln| are
computed as follows:

αln(µ)|ωln〉 = h(µ + η)|ωl−1
n 〉 (2.16)

δln(µ)|ωln〉 = h(µ− η)|ωl+1
n 〉 (2.17)

γ ln(µ)|ωln〉 = 0 (2.18)

〈ωln|αln(µ) = 〈ωl+1
n |

g(τn+l−1)

g(τn+l)
h(µ + η) (2.19)

〈ωln|δln(µ) = 〈ωl−1
n |

g(τn+l)

g(τn+l−1)
h(µ− η) (2.20)

〈ωln|βln(µ) = 0 (2.21)

whereh(µ) = g(µ)2(0). Note that|ωln〉 and〈ωln| are independent of the spectral parameters.
They are called the local vacuums.

Fork, l = 0, . . . ,Q− 1 we introduce a matrix

Tk,l(µ) = M−1
k (µ)T (µ)Ml(µ) =

(
Ak,l(µ) Bk,l(µ)

Ck,l(µ) Dk,l(µ)

)
. (2.22)

Under the gauge transformations the monodromy matrixT (µ) is replaced byTL+l,l(µ). We
thus callTk,l(µ) the generalized monodromy matrix. This plays a central role in the next
subsection.

The products of the local vacuums are called the generating vectors:

|l〉 = |ωlL〉 ⊗ · · · ⊗ |ωl1〉 〈l| = 〈ωl1| ⊗ · · · ⊗ 〈ωlL|. (2.23)

By use of local formulae (2.16)–(2.21) the actions of elements of the monodromy matrix on
the generating vectors are computed as follows:

AL+l,l(µ)|l〉 = (h(µ + η))L|l − 1〉 (2.24)

DL+l,l(µ)|l〉 = (h(µ− η))L|l + 1〉 (2.25)

CL+l,l(µ)|l〉 = 0 (2.26)

〈l|AL+l,l(µ) = 〈l + 1| g(τl)
g(τL+l)

(h(µ + η))L (2.27)

〈l|DL+l,l(µ) = 〈l − 1|g(τL+l)

g(τl)
(h(µ− η))L (2.28)

〈l|BL+l,l(µ) = 0. (2.29)

If Q dividesL extra factors ofg(τl) andg(τL+l) are cancelled. Hereafter we assume that the
lattice lengthL is multiple ofQ.

2.3. Generalized algebraic Bethe ansatz

The Yang–Baxter equation (2.7) can be shifted up to the level of the monodromy matrix:

R(λ,µ)(T (λ)⊗ T (µ)) = (T (µ)⊗ T (λ))R(λ, µ). (2.30)
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From this Yang–Baxter equation one can obtain the commutation relations among elements
of the generalized monodromy matrix. Useful relations are the following:

Ak,l(λ)Ak+1,l+1(µ) = Ak,l(µ)Ak+1,l+1(λ) (2.31)

Bk,l+1(λ)Bk+1,l(µ) = Bk,l+1(µ)Bk+1,l(λ) (2.32)

Ck+1,l(λ)Ck,l+1(µ) = Ck+1,l(µ)Ck,l+1(λ) (2.33)

Dk+1,l+1(λ)Dk,l(µ) = Dk+1,l+1(µ)Dk,l(λ) (2.34)

Ak,l(λ)Bk+1,l−1(µ) = α(λ, µ)Bk,l−2(µ)Ak+1,l−1(λ)− βl−1(λ, µ)Bk,l−2(λ)Ak+1,l−1(µ) (2.35)

Dk,l(λ)Bk+1,l−1(µ) = α(µ, λ)Bk+2,l(µ)Dk+1,l−1(λ) + βk+1(λ, µ)Bk+2,l(µ)Dk+1,l−1(λ) (2.36)

Ck−1,l−1(µ)Ak,l(λ) = α(λ, µ)Ak+1,l−1(λ)Ck,l(µ) + βk(µ, λ)Ak+1,l−1(µ)Ck,l(λ) (2.37)

Ck+1,l+1(µ)Dk,l(λ) = α(µ, λ)Dk+1,l−1(λ)Ck,l(µ)− βl(µ, λ)Dk+1,l−1(µ)Ck,l(λ) (2.38)

Ck−1,l+1(λ)Bk,l(µ)− g(τl−1)g(τl+1)

g2(τl)
Bk+1,l−1(µ)Ck,l(λ)

= βk(λ, µ)Ak+1,l+1(λ)Dk,l(µ)− βl(λ, µ)Ak+1,l+1(µ)Dk,l(λ) (2.39)

where

α(λ, µ) = h(λ− µ− 2η)

h(λ− µ) βk(λ, µ) = h(2η)

h(µ− λ)
h(τk +µ− λ)

h(τk)
. (2.40)

The generalized algebraic Bethe ansatz offers a simple method to find the eigenvectors
and eigenvalues of the transfer matrix:

t (µ) = tr T (µ) = Al,l(µ) +Dl,l(µ). (2.41)

Let us introduce vectors

|9l(λ1, . . . , λN)〉 = Bl+1,l−1(λ1) · · ·Bl+N,l−N(λN)|l −N〉 (2.42)

〈9l(λ1, . . . , λN)| = 〈l −N + 1|Cl+N−1,l−N+1(λN) · · ·Cl,l(λ1). (2.43)

Here we set

2N ≡ 0 modQ. (2.44)

Namely, the admissible values ofN are

N =
{

0,Q,2Q, . . . , L for oddQ

0,Q/2,Q, . . . , L for evenQ.

Referring to the algebraic Bethe ansatz for theXXZ spin chain we call the vectors (2.42) and
(2.43) the Bethe vectors. By means of commutation relations (2.32), (2.33), (2.35)–(2.38) and
relations (2.24)–(2.29) the actions ofAl,l(µ) andDl,l(µ) on the Bethe vectors are computed
as follows:

Al,l(µ)|9l(λ1, . . . , λN)〉 = 13(µ; {λk})|9l−1(λ1, . . . , λN)〉

+
N∑
j=1

13
l
j (µ; {λk})|9l−1(λ1, . . . , λj−1, µ, λj+1, . . . , λN)〉 (2.45)

Dl,l(µ)|9l(λ1, . . . , λN)〉 = 23(µ; {λk})|9l+1(λ1, . . . , λN)〉

+
N∑
j=1

23
l
j (µ; {λk})|9l+1(λ1, . . . , λj−1, µ, λj+1, . . . , λN)〉 (2.46)
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〈9l−1(λ1, . . . , λN)|Al,l(µ) = 〈9l(λ1, . . . , λN)|13(µ; {λk})

+
N∑
j=1

〈9l(λ1, . . . , λj−1, µ, λj+1, . . . , λN)|13̃l
j (µ; {λk}) (2.47)

〈9l+1(λ1, . . . , λN)|Dl,l(µ) = 〈9l(λ1, . . . , λN)|23(µ; {λk})

+
N∑
j=1

〈9l(λ1, . . . , λj−1, µ, λj+1, . . . , λN)|23̃l
j (µ; {λk}) (2.48)

where

13(µ; {λk}) = (h(µ + η))L
N∏
k=1

α(µ, λk) (2.49)

23(µ; {λk}) = (h(µ− η))L
N∏
k=1

α(λk, µ) (2.50)

13
l
j (µ; {λk}) = −βl−1(µ, λj )(h(λj + η))L

N∏
k 6=j

α(λj , λk) (2.51)

23
l
j (µ; {λk}) = βl+1(µ, λj )(h(λj − η))L

N∏
k 6=j

α(λk, λj ) (2.52)

13̃
l
j (µ; {λk}) = βl(λj , µ)(h(λj + η))L

N∏
k 6=j

α(λj , λk) (2.53)

23̃
l
j (µ; {λk}) = −βl(λj , µ)(h(λj − η))L

N∏
k 6=j

α(λk, λj ). (2.54)

For integerm = 0, . . . ,Q−1 consider the following linear combinations of the Bethe vectors:

|8m(λ1, . . . , λN)〉 = 1√
Q

Q−1∑
l=0

e2π ilm/Q|9l(λ1, . . . , λN)〉 (2.55)

〈8m(λ1, . . . , λN)| = 1√
Q

Q−1∑
l=0

〈9l(λ1, . . . , λN)|e−2π ilm/Q. (2.56)

By means of relations (2.45)–(2.48) they are shown to be the eigenvectors of the transfer
matrix:

t (µ)|8m(λ1, . . . , λN)〉 = 3m(µ; {λk})|8m(λ1, . . . , λN)〉 (2.57)

〈8m(λ1, . . . , λN)|t (µ) = 〈8m(λ1, . . . , λN)|3m(µ; {λk}) (2.58)

if the spectral parameters{λj } satisfy theBethe ansatz equations:(
h(λj + η)

h(λj − η)
)L
= e−4π im/Q

N∏
k 6=j

α(λk, λj )

α(λj , λk)
(j = 1, . . . , N). (2.59)

Here the eigenvalue is given by

3m(µ; {λk}) = e2π im/Q
13(µ; {λk}) + e−2π im/Q

23(µ; {λk}). (2.60)

We thus have obtained the eigenvectors for theXYZ spin chain (2.55) and (2.56).
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In the caseQ = 2 the Bethe ansatz equations break up intoN independent equations
for the spectral parameters{λj }. This case corresponds to the Ising, dimer and free-fermion
models [1].

3. Gaudin hypothesis

In this section we compute the sum of norms of the Bethe vectors:

Mn(λ1, . . . , λn) = 1

Q

Q−1∑
l=0

〈9n
l (λ1, . . . , λn)|9n

l (λ1, . . . , λn)〉. (3.1)

Here the Bethe vectors are redefined by

|9n
l (λ1, . . . , λn)〉 = Bl+N−n+1,l−N+n−1(λ1) · · ·Bl+N,l−N(λn)|l −N〉 (3.2)

〈9n
l (λ1, . . . , λn)| = 〈l −N + 1|Cl+N−1,l−N+1(λn) · · ·Cl+N−n,l−N+n(λ1) (3.3)

and the spectral parameters{λj } are supposed to satisfy the Bethe ansatz equations:

r(λj )

n∏
k 6=j

α(λj , λk)

α(λk, λj )
= e−4π im/Q (j = 1, . . . , n) (3.4)

where

r(λ) =
(
h(λ + η)

h(λ− η)
)L
. (3.5)

We computeMn(λ1, . . . , λn) by induction onn. Let

‖λ1, . . . , λn‖n = (−h′(0))nMn(λ1, . . . , λn)

cL(h(2η))n
∏n
j=1(h(λj + η)h(λj − η))L

∏n
j 6=k α(λj , λk)

(3.6)

with the norm of the generating vectors:

cL = 〈l|l − 1〉 =
(

2g(η − 1
2(s − t))

g(K)

)L L∏
i=1

g(τi+l−2). (3.7)

Notice thatcL is independent ofl due to the periodicity ofg(µ).
Extending Korepin’s proof of the Gaudin hypothesis [5] we prove that‖λ1, . . . , λn‖n is

expressed in the form of a Jacobian (see (3.15)). This result implies the Gaudin hypothesis for
theXYZ spin chain; the Gaudin hypothesis is regarded as a theorem that holds for the Bethe
vectors by virtue of the fact that they correspond to the eigenvectors in the usual algebraic
Bethe ansatz.

Using the solutions of the Bethe ansatz equations{λk} we introduce new parameters:

Xj = d

dλj
logr(λj ) (j = 1, . . . , n). (3.8)

Lemma 1. ‖λ1, . . . , λn‖n is invariant under simultaneous replacements:

λj ↔ λk and Xj ↔ Xk (j, k = 1, . . . , n).

Proof. Because of commutation relations (2.32) and (2.33),Mn(λ1, . . . , λn) and therefore
‖λ1, . . . , λn‖n are invariant under the replacements. �
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Lemma 2. ‖λ1, . . . , λn‖n = 0 if X1 = · · · = Xn = 0.

Proof. Let 4ε = minj 6=k |λj − λk| and consider a new continuous functionr̃(λ) that coincides
with r(λj ) for |λ − λj | 6 ε (j, k = 1, . . . , n). By definition the set{Xj } derived fromr̃(λ)
satisfiesX1 = · · · = Xn = 0. Next, we introduce new spectral parameters

λ̃j = λj + δ |δ| < ε (j = 1, . . . , n). (3.9)

These spectral parameters{λ̃j } still obey the Bethe ansatz equations (3.4), becauseα(λ̃j , λ̃k)

depends only onλj − λk and r̃(λ̃j ) is equal tor(λj ) by definition of r̃(λ) and {λ̃j }
(j, k = 1, . . . , n). We define

Fn(δ) = 1

Q

Q−1∑
l=0

〈9n
l (λ1, . . . , λn)|9n

l (λ̃1, . . . , λ̃n)〉. (3.10)

EvaluatingFn(δ) helps us to prove the lemma. Compute

1

Q

Q−1∑
l=0

(e2π im/Q〈9n
l−1(λ1, . . . , λn)|Al+N−n,l−N+n(µ)|9n

l (λ̃1, . . . , λ̃n)〉

+e−2π im/Q〈9n
l+1(λ1, . . . , λn)|Dl+N−n,l−N+n(µ)|9n

l (λ̃1, . . . , λ̃n)〉)
in two ways that both ofAl+N−n,l−N+n(µ) andDl+N−n,l−N+n(µ) operate to the left or to the
right. It thus follows that

(3m(µ; {λk})−3m(µ; {λ̃k}))Fn(δ) = 0. (3.11)

Since3m(µ; {λk}) is a continuous function for{λk}, Fn(δ)must be 0. Due to the definition of
‖λ1, . . . , λn‖n the proof is complete. �

Lemma 3. ‖λ1, . . . , λn‖n satisfies a recursion relation:

‖λ1, . . . , λn‖n = ‖λ2, . . . , λn‖mod
n−1X1 + V1 (3.12)

whereV1 is independent ofX1. ‖λ2, . . . , λn‖mod
n−1 is defined byn − 1 solutions of the Bethe

ansatz equations andr(λ) is modified by

rmod(λ) = r(λ)α(λ, λ1)

α(λ1, λ)
. (3.13)

Proof. Mn is reduced toMn−1 with the help of the commutation relation (2.39) and relations
(2.45) and (2.46). Letting bothAl+N−n+2,l−N+n andDl+N−n+1,l−N+n−1 act on the right Bethe
vector we obtain

Mn(λ1, . . . , λn) = 1

Q

Q−1∑
l=0

lim
λC1→λ1

[βl+N−n+1(λ
C
1 , λ1)13(λ

C
1 ; {λk}k 6=1)23(λ1; {λk}k 6=1)

−βl−N+n−1(λ
C
1 , λ1)13(λ1; {λk}k 6=1)23(λ

C
1 ; {λk}k 6=1)]

×〈9n−1
l (λ2, . . . , λn)|9n−1

l (λ2, . . . , λn)〉 + terms independent ofX1

= h(2η)(h(λ1 + η)h(λ1− η))L
n∏
j 6=k

α(λj , λk)

× 1

−h′(0)
∂

∂λ1
log

(
r(λ1)

n∏
k=2

α(λ1, λk)

α(λk, λ1)

)
Mmod

n−1(λ2, . . . , λn)

+ terms independent ofX1. (3.14)
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Here we have used l’Hospital’s rule. Notice that extra terms whose right Bethe vectors still
containλ1 do not generateX1, because it raises only in the case where both of the Bethe vectors
depend onλ1 and l’Hospital’s rule is applied. Formula (3.14) implies the lemma. �

Lemma 4. ‖λ1‖1 = X1.

Proof. The proof is straightforward withτl+N = τl−N . �

By lemmas 1–4,‖λ1, . . . , λn‖n is determined uniquely. The following is a main result of
this paper and corresponds to the Gaudin hypothesis for theXYZ spin chain.

Theorem. ‖λ1, . . . , λn‖n has the following Jacobian form:

‖λ1, . . . , λn‖n = detn
∂ϕk

∂λj
(3.15)

where

ϕk = log

(
r(λk)

n∏
i 6=k

α(λk, λi)

α(λi, λk)

)
. (3.16)

Proof. It is obvious that this expression satisfies lemma 1–4. We prove its converse by
induction onn. Let

1q = ‖λ1, . . . , λq‖q − detq
∂ϕk

∂λj
(q = 1, . . . , n). (3.17)

By lemma 4 it follows that11 = 0. Let us assume that1q = 0 for q = 1, . . . , n − 1. By
lemma 3 we have

∂1n

∂X1
= ‖λ2, . . . , λn‖mod

n−1− detn−1
∂ϕmod

k

∂λj
. (3.18)

By the assumption of induction the right-hand side is equal to 0. Thus1n is independent of
X1. By lemma 11n does not depend on anyXj (j = 1, . . . , n). Hence we obtain1n = 0
owing to lemma 2. The proof has been completed. �

The functionϕk is expanded as

ϕk = 2π ilk − L
[
π i

(
1 +

λk

K

)
− 2

∞∑
m=1

sin(mπλk/K) sin(mπ(η − 1
2iK ′)/K)

m sinh(mπK ′/2K)

]

−
n∑
i 6=k

[
π i

(
1 +

λi − λk
K

)

−2
∞∑
m=1

sin(mπ(λi − λk)/K) sin(mπ(2η − 1
2iK ′)/K)

m sinh(mπK ′/2K)

]
(3.19)

wherelk is half-integer. Because of the condition forη (2.3) this series converge absolutely
provided that

Im
λk

K
= 0 (k = 1, . . . , n). (3.20)
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4. Concluding remarks

We have computed the sum of norms of the Bethe vectors and have proved that it is expressed
in the form of a Jacobian (3.15). Note that the Bethe vectors correspond to the eigenvectors
in the usual algebraic Bethe ansatz. Our result is thus equivalent to the Gaudin hypothesis for
theXYZ spin chain.

Physically, calculation of norms of the eigenvectors is important. However, it is impossible
to compute them in the framework of the original generalized algebraic Bethe ansatz, because
extra scalar products of the Bethe vectors with differentl such that〈9l|9l′ 〉 (l 6= l′) always
appear, and they cannot be calculated. It is necessary to develop a new method to obtain not
only norms of the eigenvectors but also scalar products of arbitrary vectors for theXYZ spin
chain.
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