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Abstract. The XY Z spin chain is considered within the framework of the generalized algebraic
Bethe ansatz developed by Takhtajan and Faddeev. The sum of norms of the Bethe vectors is
computed and expressed in the form of a Jacobian. This result corresponds to the Gaudin hypothesis
for the XY Z spin chain.

1. Introduction

In this paper we consider th€Y Z spin chain with the periodic boundary condition. The
Hamiltonian is defined by

L
1 y .
Hyyz = —3 E (Jxo, o0 + Jy0,) 0,0+ J.0505,). (1.1)
n=1

Hereo?, 0, ando; are the Pauli matrices acting on a Hilbert state spdge= C2. The
Hamiltonian thus acts o®%_, H,. The coupling constant, J, andJ, are parametrized by

Jo=1+ksrf2y Jy=1—ksrf2y J. =cn2ydn2y (1.2)

wherek is the modulus of the Jacobi elliptic functions. In the limit> 0 J,, J, andJ, satisfy
Jy = J, = 1andJ, = cos 2, and theXY Z spin chain is reduced to theX Z spin chain.

The XY Z spin chain was first solved by Baxter in a series of remarkable papers [1, 2].
He discovered a link between théY Z spin chain and a two-dimensional classical model,
the so-called eight-vertex model, and obtained a system of transcendental equations. With the
help of these equations the energy of the ground state of #é spin chain was calculated.
Furthermore, he found the eigenvectors and eigenvalues afft#espin chain by means of a
generalization of the Bethe ansatz method [3]. Referring to the algebraic Bethe ansatz, which
is more intelligible than the Bethe ansatz, Takhtajan and Faddeev succeeded in simplifying
Baxter's method [4]. Their method is called tipeneralized algebraic Bethe ansatzd enables
us to deal with theX(Y Z spin chain more systematically.

For theX X Z spin chain, by means of the usual algebraic Bethe ansatz, various correlation
functions have been calculated. Gaudin forecasted that norms of the eigenvectors are expressed
by Jacobians, and Korepin proved his hypothesis [5]. Based on this fact scalar products of
arbitrary vectors were shown to be represented by determinants of matrices that contain bosonic
quantum fields called the dual fields [6]. Using them one can evaluate any correlation function
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of the X X Z spin chain. Recently, these results have been extended to the asymiie#ic
chain that is a non-Hermitian generalization of & Z spin chain [7].

The aim of the paper is to prove the Gaudin hypothesis fokthH& spin chain by using
the generalized algebraic Bethe ansatz. We show that the sum of norms of the Bethe vectors
is expressed by a Jacobian. However, norms of the eigenvectors cannot be computed within
the framework of the generalized algebraic Bethe ansatz, because the Bethe vectors are not
equivalent to the eigenvectors (see (2.42), (2.43) and (2.55), (2.56)). We interpret the Gaudin
hypothesis as atheorem that holds for the Bethe vectors. This interpretation is supported by the
fact that the Bethe vectors correspond to the eigenvectors in the usual algebraic Bethe ansatz
for the X X Z spin chain.

Our result lays the foundation for the calculation of correlation functions oXth& spin
chain. In section 2 we review the generalized algebraic Bethe ansatz. In section 3 the sum
of norms of the Bethe vectors is shown to be given by a Jacobian. Section 4 is devoted to
concluding remarks.

2. Generalized algebraic Bethe ansatz

In this section we review the generalized algebraic Bethe ansatz fofitt¥espin chain. In
the original paper [4] the dual eigenvectors were not investigated. We include them for the
first time.

2.1. Description of the model

Central objects of the generalized algebraic Bethe ansatz arethegrix and the.-operator.
The R-matrix is of the form

a(h, 1) 0 0 d, w)
0 b(h, ) c(h, ) 0
R(L = 2.1
Gt 0 cGuw bOw O @)
d(h, 1) 0 0 a(h, 1)

where
a(h, ) =02NOM — W H — pu+2n)
bk, n) =H2nOO — w)OQ — u+2n)
ch, ) =OCNHM — )OO — pu+2n)
d(h, ) =H@nHM — p)H (@ — pu+2n).

We call A, u € C the spectral parameterdd (1) and ® () are the Jacobi theta functions
with quasi-periods R, 2iK’ € C (ImiK’/K > 0). In this paper we assume that there exist
Q € Z-.g such that

(2.2)

On =2K. (2.3)
ThenH (1) and® (u) have a period 27:
H(pn+20n) = H(w) O(u+20n) = O(u). (2.4)

The L-operator is expressed by ax22 matrix whose elements contain the Pauli matrices:

wy + w30 ° wio* — lwyo,)

n n n

Luu) = wioF +iwso; Wg — W30} (2:3)
10, 207 4 — W30,
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where

wyg + w3 = O@2N)O (1 —n)H(n+n)
wg — w3z = O@n)H(n —n)O(n+n)
w1 +wz = H2n)O(u —nO(n+n)
w1 — w2 =HE@H @ —n)H(u+n).

(2.6)

TheL-operatoll, (1) acts on a Hilbert state spagk. This satisfies th#ang—Baxter equation
R, )(Ln(A) @ Ly()) = (Ln(p) ® Ly (M) R(A, ). (2.7)

The Hamiltonian is derived from thie-operator as follows. The product of theoperators
is called the monodromy matrix and is expressed ina2matrix form:

- Aw) B
T =[]Law = : (2.8)
i C(uw) D)
The trace of the monodromy matrix over matrix space
t(u) =tr T () = A(u) + D(w) (2.9)
is called the transfer matrix and gives the Hamiltonian (1.1) via
d
Hyyz; = —sn 27— log#(u) + constant (2.10)
due u=n

The Hamiltonian is thus diagonalized by the eigenvectors of the transfer matrix.

2.2. Gauge transformations

We introduce a family of gauge transformations with free parameterss C and integer
[=0,...,0 — 1. TheL-operator is replaced by

L) = M2 L (10) My 1 (12) = ( “’I;(“ i ;l’(“ ) ) 2.11)
Ya(t) 8, (1)

with matricesM; (1) (k =0, ..., O — 1) defined by

wn = (LTI ) e
where

w=3(+n+2&n—K  g(u)=H@OW. (2.13)
In the generalized algebraic Bethe ansatz the following vectors are important:

lwp) = H(s + 2 +1) = m) [1)a + O(s + R +1) — D) [ ) (2.14)

(@, | = (11O + @ +1) = Dn) — (P H( + 2 +1) — ). (2.15)
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Here|t), and|| ), are the orthonormal basis of a Hilbert state spdgeand, (1| and, (|| are
those dual basis. The actions of elements of the transfoitragerator orjw!) and(w! | are
computed as follows:

al (W) = h(p+mn)lw’™) (2.16)
sL(wlal) = h( — mlal™) (2.17)
Vo)) =0 (2.18)
(@hlo (1) = (@) 8ni1)y ) (2.19)
g(rn+l)
(@18 (n) = <wﬁ_1IMh(u —n) (2.20)
8 (Tpsi—1)
(@h1Bh(w) =0 (2.21)

whereh () = g(u)®(0). Note thauwf,) and(a)ﬁl| are independent of the spectral parameters.
They are called the local vacuums.
Fork,l =0,..., Q — 1 we introduce a matrix

Ari()  Bry(w)
Cri() D) )

Under the gauge transformations the monodromy mdtrjx) is replaced byl . ;(1). We
thus call 7 ; () the generalized monodromy matrix. This plays a central role in the next
subsection.

The products of the local vacuums are called the generating vectors:

Tii() = MO T ()M () = ( (2.22)

) = o)) ® - ® |w)) (= (]| ® - ® (w]. (2.23)

By use of local formulae (2.16)—(2.21) the actions of elements of the monodromy matrix on
the generating vectors are computed as follows:

Aps (Il = (h(u+n)* |l — 1) (2.24)

Dpw (u)|l) = (h( — n)*|l + 1) (2.25)

Cra(w|l) =0 (2.26)

WAz = 1+ 15T G+t (2.27)
g(tr+1)

WD s () = (1 = 15D e — (2.28)
g(t)

(l|Br+i1(n) = 0. (2.29)

If Q dividesL extra factors of(z;) andg(zr;+;) are cancelled. Hereafter we assume that the
lattice lengthL is multiple of Q.

2.3. Generalized algebraic Bethe ansatz

The Yang—Baxter equation (2.7) can be shifted up to the level of the monodromy matrix:

R, )T QT (w) = (T() @ T(A))R(A, ). (2.30)
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From this Yang—Baxter equation one can obtain the commutation relations among elements
of the generalized monodromy matrix. Useful relations are the following:

At M) Agrr i1 (1) = A () A 141(2) (2.31)
By 141(A) Bis1,1 (1) = By r41(1) Bir1,1 (1) (2.32)
Crr1,1 (M) Cr a1 () = Crar1 () C 142(2) (2.33)
Dys1,141(A) Dyt (1) = Dy1,1+1() Dy 1 (1) (2.34)

Akt (M) Brrri—1() = a(h, ) By j—2(10) Agr1,1-1(A) — Br—1(A, ) By j—2(A) Agsr,1-1(n) (2.35)
Dii(M) Brs11-1(1) = (i, 1) Bea2 (1) Dgs1,1—1(A) + Bre1 (A, 1) Bao, 1 (10) Dir1,-1(1) - (2.36)

Cr_p—1()Ag (V) = a(A, ) Ager1—1 (AN Cr () + B, M) Agrg1—1() Crr (1) (2.37)
Crrri+1() Dy y(A) = o (t, A) D1, 1—1(A) Cr 1 () — B (s A) Dy 1—1(10) C 1 (1) (2.38)
Corima 0By — STV g 0 ¢
g°(m)

= Br(h, W) Agrr,+1(A) Dy () — Bi (&, ) Agrr,i+1(0) Dy 1 (1) (2.39)
where

h(h — p —2n) h(2n) h(te+p—21)

A, = A, = . 2.40

a, p = B0 = 2 S T (2.40)

The generalized algebraic Bethe ansatz offers a simple method to find the eigenvectors
and eigenvalues of the transfer matrix:

() =t T(w) = Ap(u) + Dy y(p). (2.41)
Let us introduce vectors

Wi (A1s -+ -y AN)) = Brari—1(A1) -+ Bran - (AN)|l — N) (2.42)

(WA, .., AN = = N+ LCran—11-n+1(An) - - - Cr 1 (A1). (2.43)
Here we set

2N = 0 modQ. (2.44)

Namely, the admissible values dfare
0,0,20,...,L for odd Q
0,0/2,0,...,L for evenQ.

Referring to the algebraic Bethe ansatz for ¥ Z spin chain we call the vectors (2.42) and
(2.43) the Bethe vectors. By means of commutation relations (2.32), (2.33), (2.35)—(2.38) and
relations (2.24)—(2.29) the actions af (i) and D, ; (1) on the Bethe vectors are computed

as follows:

AL ()W (A, oo An)) = 1A (s {ADIW—1 (R, ..., AN))

N
+ A s DI (A Ao A, Ay)) (2.45)
=i
Dy i)W (A -5 AN)) = 2A (s M D IWe1 (A, - o5 Aw))
N
3 AL D WA, Aot e A A)) (2.46)

j=1
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(Wi—1(hg, o AMIALI () = (Wi (A, .o, AN 1A (s {Ak))

N
D AW, - Ay, 1 A A A (s (D) (2.47)
j=1
(Wir1(A1, ..., ANID () = (Y (Ag, ..., AN 2A (s (A )
N
D AW, - Ay 1 A, A AL (s () (2.48)
j=1
where
N
LA Qs () = e+ m)* T [ e, ) (2.49)
k=1
N
2A s D)) = (e — )" [ [, ) (2.50)
k=1
N
1A () = —Brea (. ARG + ) T TG ) (2.51)
k#j
N
2N (1 ) = Brea(s ARGy — )" [ [ e 1) (2.52)
k#j
N
AL s ) = B0 i (g + )™ [ TG ) (2.53)
k#j
- N
2N s () = =B 0 ) (RO — )* T [ s ). (2.54)
ki#j
Forintegem = 0, ..., O —1 consider the following linear combinations of the Bethe vectors:
1 &
| Dy Ay ...y AN)) = 75 ; e M1 (Aq, ..., AN)) (2.55)
1 &L 27l
(@ (A1, ... Ay = 75 l=0<xpl(xl, o Ay)|eime (2.56)

By means of relations (2.45)—(2.48) they are shown to be the eigenvectors of the transfer
matrix:

()P (A1, - AN)) = N (5 DI P (R, - .-, An)) (2.57)

(P (g, ooy ANE() = (P (A oo AN A (145 {Ak)) (2.58)
if the spectral paramete(s ;} satisfy theBethe ansatz equations

. L . N .
(M) — g 4mim/Q ah, Aj) (j=1,...,N). (2.59)
Here the eigenvalue is given by
A (g5 D) = €M CLA (s fuh) + €7 QoA (s ). (2.60)

We thus have obtained the eigenvectors forXh€Z spin chain (2.55) and (2.56).
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In the caseQ = 2 the Bethe ansatz equations break up iNtégndependent equations

for the spectral parametefs;}. This case corresponds to the Ising, dimer and free-fermion
models [1].

3. Gaudin hypothesis

In this section we compute the sum of norms of the Bethe vectors:

My, . ooy Ay) = i Qil(\IJ]"(Al, ce A (A, - A)). (3.2)
Q=
Here the Bethe vectors are redefined by
[ (A1, ..oy Ap)) = Bran—n+1i—n+n—1(A1) - - - Bian =N ()|l — N) (3.2)
(W' A, oo M) = (0= N+ LCran—11-N+1(Ap) - - Cran—ni—N+n (A1) (3.3)

and the spectral parameté?s} are supposed to satisfy the Bethe ansatz equations:

Ol()\./, )Lk) —47rim/Q .
r(ij) (G=1....,n (3.4)
,g s Aj)
where
_(h+m\F
r) = (—m_n)) . (3.5)

We computeM,, (A1, ..., A,) by induction om. Let
(=h'(0)" My (A1, ...\ An)

My ooy Mplln = 3.6
o bl = G @y T s (h iy + MGy — ) T @Gy, 2 (3:6)
with the norm of the generating vectors:
2 —t
L= (-1 = (%) ]_[g(mz ). (3.7)

Notice thatc; is independent of due to the periodicity of (u).

Extending Korepin's proof of the Gaudin hypothesis [5] we prove fhat ..., A, |, is
expressed in the form of a Jacobian (see (3.15)). This result implies the Gaudin hypothesis for
the XY Z spin chain; the Gaudin hypothesis is regarded as a theorem that holds for the Bethe
vectors by virtue of the fact that they correspond to the eigenvectors in the usual algebraic
Bethe ansatz.

Using the solutions of the Bethe ansatz equatidn$ we introduce new parameters:

d
X; = —Ilogr(x) (j=1,...,n). (3.8)
dx;
Lemma 1. ||Ay, ..., A.ll, IS invariant under simultaneous replacements:
Aj < g and X< Xk (J,k=1,...,n).
Proof. Because of commutation relations (2.32) and (2.33),(A1, ..., A,) and therefore

A1, ..., Anll, are invariant under the replacements. O
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Lemma2. A1, ..., A, =0if X3 =-.. =X, =0.

Proof. Let 4e = min; |A; — A¢| and consider a new continuous functian) that coincides
with r(A;) for | — &;| < e (j,k = 1,...,n). By definition the se{X} derived fromr (%)
satisfiesX; = - -- = X,, = 0. Next, we introduce new spectral parameters

A=A +38 18] < & (j=1,...,n). (3.9)
These spectral parametdis } still obey the Bethe ansatz equations (3.4), because, ;)
depends only ork; — &, and 7(%;) is equal tor(x;) by definition of #(x) and {x,}
(j,k=1,...,n). We define

0-1

1 N s
F,(8) = s Z(\If,"()\l, A G ). (3.10)
=0

EvaluatingF, (8) helps us to prove the lemma. Compute
12 . -
o Z(e%""/Qw;llm, o I AN N W] Gt )

+e MW (A, )| Dien =N O] (R L Ag)))
in two ways that both ofd;«y_,;—n+: () aNd Dyxn - n+2 (1) Operate to the left or to the
right. It thus follows that

(A (s (kD) — A (s (D)) F (8) = 0. (3.11)
SinceA,, (u; {*}) is a continuous function fdiv, }, F,,(8) must be 0. Due to the definition of
A1, ..., Anll, the proof is complete. O
Lemma 3. ||A4, ..., A,|l, Satisfies a recursion relation:

22, s Anlle = A2, A 7% X0 + VA (3.12)
whereVy is independent oK. ||Ao, ..., A, ||m°1 is defined by: — 1 solutions of the Bethe
ansatz equations and) is modified by

Ol()», )»]_)
a(r, A)

900 = r()) (3.13)
Proof. M, is reduced to\1,,_; with the help of the commutation relation (2.39) and relations
(2.45) and (2.46). Letting botA;+y_+2/— N+, @NA Dyyy_p+1/—n+n—1 @Ct ON the right Bethe
vector we obtain

;_\

o—

1
) |m [Bren—ne1 (RS, AD1AS s (hdiz)2A (hts (A dier)
=0 MM

—Bi—nin—1 (AL, AD1A 1 (k)2 A LS5 ()]
(U0, o ) W (g, .., A)) + terms independent of

M, . hy) =

= h(2n)(h(ha+ mh(a — )" ]_[tx(kj, M)
J#k

! a (A1, M) mod
_h (O) a)\. ( l)l_[ ()"k,)\' )) n— 1( 25+ )

+ terms independent of ;. (3.14)



Gaudin hypothesis for the XYZ spin chain 8397
Here we have used I'Hospital’s rule. Notice that extra terms whose right Bethe vectors still

containi; do not generat&;, because it raises only in the case where both of the Bethe vectors
depend on.; and I'Hospital’s rule is applied. Formula (3.14) implies the lemma. |

Lemmad4. |A1]l1 = X1.

Proof. The proof is straightforward witly.y = 7;_y. O
By lemmas 14|14, ..., A, is determined uniquely. The following is a main result of
this paper and corresponds to the Gaudin hypothesis fox ¥ spin chain.
Theorem. ||Ag, ..., A, ], has the following Jacobian form:
0
1A Al = deaﬂ (3.15)
where
o (Ag, Aj)
= log| r(A¢) > 3.16
g( ,11 (Ais M) ( )

Proof. It is obvious that this expression satisfies lemma 1-4. We prove its converse by
induction onn. Let

ok

=[As, .. Ay — detanj

(g=1,...,n). 3.17)
By lemma 4 it follows thatA; = 0. Let us assume that, = Oforg =1,...,n — 1. By
lemma 3 we have

A, 8<p,£"°d

= A2 ..., A]™9 — det,_ )
BX]_ ” 2 n”n_]_ 1‘n 1 a)w

(3.18)

By the assumption of induction the right-hand side is equal to 0. Thuis independent of
X;. By lemma 1A, does not depend on ark; (j = 1,...,n). Hence we obtaim\,, = 0
owing to lemma 2. The proof has been completed. O

The functiong, is expanded as

o sin(mm A,/ K) sin(mm (n — —IK )/K)
or = 2l — |: <1+_) ZmZ m Sinh(mm K'/2K) ]

- Z[m (1 g )
i#k
sin(mm (A; — M) /K) sinmm (2n — 3iK")/K)
B Z m sinh(mm K’ /2K) i|

m=

(3.19)

wherel; is half-integer. Because of the condition fp(2.3) this series converge absolutely
provided that

A
|m?"=o k=1...n). (3.20)
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4. Concluding remarks

We have computed the sum of norms of the Bethe vectors and have proved that it is expressed
in the form of a Jacobian (3.15). Note that the Bethe vectors correspond to the eigenvectors
in the usual algebraic Bethe ansatz. Our result is thus equivalent to the Gaudin hypothesis for
the XY Z spin chain.

Physically, calculation of norms of the eigenvectors is important. However, itis impossible
to compute them in the framework of the original generalized algebraic Bethe ansatz, because
extra scalar products of the Bethe vectors with diffedestich that(\y;|¥,) (I # ') always
appear, and they cannot be calculated. It is necessary to develop a new method to obtain not
only norms of the eigenvectors but also scalar products of arbitrary vectors f&itHespin
chain.
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